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Abstract

Although in theory opponent modeling can be useful in any
adversarial domain, in practice it is both difficult to do accu-
rately and to use effectively to improve game play. In this
paper, we present an approach for online opponent modeling
and illustrate how it can be used to improve offensive perfor-
mance in the Rush 2008 football game. In football, team be-
haviors have an observable spatio-temporal structure, defined
by the relative physical positions of team members over time;
we demonstrate that this structure can be exploited to recog-
nize football plays at a very early stage of the play using a su-
pervised learning method. Based on the teams’ play history,
our system evaluates the competitive advantage of executing
a play switch based on the potential of other plays to increase
the yardage gained and the similarity of the candidate plays
to the current play. In this paper, we investigate two types
of play switches: 1) whole team and 2) subgroup switching.
Both types of play switches improve offensive performance,
but by only modifying the behavior of a key subgroup of of-
fensive players, we improve on the yardage gained.

Introduction
By accessing the play history of your opponent, it is pos-
sible to glean critical insights about future plays. This was
recently demonstrated at a soccer match by an innovative,
well-prepared goalkeeper who used his iPod to review a
video play history of the player taking a penalty kick; iden-
tifying the player’s tendency to kick to the left allowed the
goalkeeper to successfully block the shot (Bennett 2009).
Although play history can be a useful source of information,
it is difficult to utilize effectively in a situation with a large
number of multi-agent interactions. Opponent modeling can
be divided into three categories: 1) online tracking 2) online
strategy recognition and 3) off-line review. In online track-
ing, immediate future actions of individual players (passes,
feints) are predicted, whereas in online strategy recognition,
the observer attempts to recognize the high-level strategy
used by the entire team. In offline review, general strengths,
weaknesses, and tendencies are identified in an offline set-
ting and used as part of the training/learning regimen.

This paper addresses the problem of online strategy
recognition in adversarial team games. In physical domains
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Figure 1: Screenshot of the Rush 2008 football simulator.
The offense team (shown in red) is using the play split 8 and
being countered by the defense (shown in blue) using a 31
formation (variant 1).

(military or athletic), team behaviors often have an observ-
able spatio-temporal structure, defined by the relative phys-
ical positions of team members. This structure can be ex-
ploited to perform behavior recognition on traces of agent
activity over time. This paper describes a method for recog-
nizing defensive plays from spatio-temporal traces of player
movement in the Rush 2008 football game (see Figure 1)
and using this information to improve offensive play.

To succeed at American football, a team must be able to
successfully execute closely-coordinated physical behavior.
To achieve this tight physical coordination, teams rely upon
a pre-existing playbook of offensive maneuvers to move the
ball down the field and defensive strategies to counter the op-
posing team’s attempts to make yardage gains. Rush 2008
simulates a modified version of American football; plays in
Rush are composed of a starting formation and instructions
for each player in the formation. These instructions are sim-
ilar to a conditional plan and include choice points where the
players can make individual decisions as well as pre-defined
behaviors that the player executes to the best of its physical
capability. Rush 2008 was developed from the open source
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Rush 2005 game, which is similar in spirit to Tecmo Bowl
and NFL Blitz (Rush2005 2005).

Although there have been other studies examining the
problem of recognizing completed football plays, we present
results on recognizing football plays online at an early stage
of play, and demonstrate a mechanism for exploiting this
knowledge to improve a team’s offense. Our system eval-
uates the competitive advantage of executing a play switch
based on the potential of other plays to improve the yardage
gained and the similarity of the candidate plays to the cur-
rent play. Our play switch selection mechanism outperforms
both the built-in offense and a greedy yardage-based switch-
ing strategy. Calculating the relative similarity of the current
play compared to the proposed play is shown to be a nec-
essary step to reduce confusion on the field and effectively
boost performance. Additionally we investigated the utility
of limiting the play switch to a small subgroup of players; by
only modifying the actions of small subgroup of key players,
we can improve on the total team switch.

Related Work
Previous work on team behavior recognition has been pri-
marily evaluated within athletic domains, including Ameri-
can football (Intille and Bobick 1999), basketball (Bhandari
et al. 1997; Jug et al. 2003), and Robocup soccer simula-
tions (Riley and Veloso 2000; 2002; Kuhlmann et al. 2006).
To recognize athletic behaviors, researchers have exploited
simple region-based (Intille and Bobick 1999) or distance-
based (Riley and Veloso 2002) heuristics to build accurate,
but domain-specific classifiers. For instance, based on the
premise that all behaviors always occur on the same playing
field with a known number of entities, it is often possible
to divide the playing field into grids or typed regions (e.g.,
goal, scrimmage line) that can be used to classify player ac-
tions. In contrast, we train our classifiers on raw observation
traces and do not rely on a field-based marker system.

In Robocup, there has been some research on team in-
tent recognition geared towards the Robocup coach compe-
tition. Techniques have been developed to extract specific
information, such as home areas (Riley et al. 2002), op-
ponent positions during set-plays (Riley and Veloso 2002),
and adversarial models (Riley and Veloso 2000), from logs
of Robocup simulation league games. This information can
be utilized by the coach agent to improve the team’s scor-
ing performance. For instance, information about opponent
agent home areas can be used triggers for coaching advice
and for doing “formation-based marking”, in which different
team members are assigned to track members of the oppos-
ing team. However, the focus of the coaching agents is to
improve performance of teams in future games; our system
immediately takes action on the recognized play to evaluate
possible play switches.

Rush Football
Football is a contest of two teams played on a rectangular
field that is bordered on lengthwise sides by an end zone.
Unlike American football, Rush teams only have 8 players
on the field at a time out of a roster of 18 players. and the

field is 100 yards by 63 yards. The game’s objective is to
out-score the opponent, where the offense (i.e., the team
with possession of the ball), attempts to advance the ball
from the line of scrimmage into their opponent’s end zone.
In a full game, the offensive team has four attempts to get
a first down by moving the ball 10 yards down the field. If
the ball is intercepted or fumbled, ball possession transfers
to the defensive team.

Pro vs 23 Power vs 31 Split vs 2222

Figure 2: Three offensive and defensive configurations. Of-
fensive players are shown in white and the defense in blue.

A Rush play is composed of (1) a starting formation and
(2) instructions for each player in that formation. A forma-
tion is a set of (x,y) offsets from the center of the line of
scrimmage. By default, directions for each player consist of
(a) an offset/destination point on the field to run to, and (b)
a behavior to execute when they get there. Play instructions
are similar to a conditional plan and include choice points
where the players can make individual decisions as well as
pre-defined behaviors that the player executes to the best of
their physical capability. Rush includes three offensive for-
mations (power, pro, and split) and four defensive ones (23,
31, 2222, 2231) 2. Each formation has eight different plays
(numbered 1-8) that can be executed from that formation.
Offensive plays typically include a handoff to the running
back/fullback or a pass executed by the quarterback to one
of the receivers, along with instructions for a running pattern
to be followed by all the receivers.

Play Recognition using SVM
In this paper we focus on intent recognition from the view-
point of the offense: given a series of observations, our goal
is to recognize the defensive play as quickly as possible
in order to maximize our team’s ability to intelligently re-
spond with the best offense. Thus, the observation sequence
grows with time unlike in standard offline activity recogni-
tion where the entire set of observations is available. We
approach the problem by training a series of multi-class dis-
criminative classifiers, each of which is designed to handle
observation sequences of a particular length. In general, we
expect that the early classifiers should be less accurate since
they are operating with a shorter observation vector and be-
cause the positions of the players have deviated little from
the initial formation.

We perform this classification using support vector ma-
chines (Vapnik 1998). Support vector machines (SVM)
are a supervised binary classification algorithm that have
been demonstrated to perform well on a variety of pattern
classification tasks, particularly when the dimensionality of



the data is high (as in our case). Intuitively the support
vector machine projects data points into a higher dimen-
sional space, specified by a kernel function, and computes
a maximum-margin hyperplane decision surface that sepa-
rates the two classes. Support vectors are those data points
that lie closest to this decision surface; if these data points
were removed from the training data, the decision surface
would change. More formally, given a labeled training set
{(x1, y1), (x2, y2), . . . , (xl, yl)}, where xi ∈ <N is a fea-
ture vector and yi ∈ {−1,+1} is its binary class label, an
SVM requires solving the following optimization problem:

min
w,b,ξ

1
2
wTw + C

l∑
i=1

ξi

constrained by:

yi(wTφ(xi) + b) ≥ 1− ξi,
ξi ≥ 0.

The function φ(.) that maps data points into the higher di-
mensional space is not explicitly represented; rather, a ker-
nel function, K(xi,xj) ≡ φ(xi)φ(xj), is used to implicitly
specify this mapping. In our application, we use the popular
radial basis function (RBF) kernel:

K(xi, xj) = exp(−γ||xi − xj ||2), γ > 0.

Several extensions have been proposed to enable SVMs
to operate on multi-class problems (with k rather than 2
classes), such as one-vs-all, one-vs-one, and error-correcting
output codes. We employ a standard one-vs-one voting
scheme where all pairwise binary classifiers, k(k − 1)/2 =
28 for every multi-class problem in our case, are trained and
the most popular class is selected. When multiple classes
receive the highest vote, we select the winning one with the
lowest index; the benefit of this approach is that classifica-
tion is deterministic but it can bias our classification in fa-
vor of lower-numbered plays. For a real game system, we
would employ a randomized tie-breaking strategy. Many ef-
ficient implementations of SVMs are publicly available; we
use LIBSVM (Chang and Lin 2001).

We train our classifiers using a collection of simulated
games in Rush collected under controlled conditions: 40
instances of every possible combination of offense (8) and
defense plays (8), from each of the 12 starting formation
configurations. Since the starting configuration is known,
each series of SVMs is only trained with data that could
be observed starting from its given configuration. For each
configuration, we create a series of training sequences that
accumulates spatio-temporal traces from t = 0 up to t ∈
{2, . . . , 10} time steps. A multiclass SVM (i.e., a collection
of 28 binary SVMs) is trained for each of these cases. Al-
though the aggregate number of binary classifiers is large,
each classifier only employs a small fraction of the dataset
and is therefore efficient (and highly paralellizable). Cross-
validation was used to tune the SVM parameters (C and σ)
for all of the SVMs.

Classification at testing time is very fast and proceeds as
follows. We select the multiclass SVM that is relevant to the

current starting configuration and time step. An observation
vector of the correct length is generated (this can be done
incrementally during game play) and fed to the multi-class
SVM. The output of the intent recognizer is the system’s
best guess (at the current time step) about the opponent’s
choice of defensive play and can help us to select the most
appropriate offense, as discussed below.

Table 1 summarizes the experimental results for differ-
ent lengths of the observation vector (time from start of
play), averaging classification accuracy across all starting
formation choices and defense choices. We see that at the
earliest timestep, our classification accuracy is at the base-
line but jumps sharply near perfect levels at t = 3. This
strongly confirms the feasibility of accurate intent recogni-
tion in Rush, even during very early stages of a play. At
t = 2, there is insufficient information to discriminate be-
tween offense plays (perceptual aliasing), however by t = 3,
the positions of the offensive team are distinctive enough to
be reliably recognized.

Offensive Play Switches
To improve offensive performance, our system evaluates the
competitive advantage of executing a play switch based on
1) the potential of other plays to improve the yardage gained
and 2) the similarity of the candidate plays to the current
play. First, we train a set of SVM models to recognize de-
fensive plays at a particular time horizon as described in the
previous section; this training data is then used to identity
promising play switches. A play switch is executed:

1. after the defensive play has been identified by the SVM
classifier;

2. if there is a stronger alternate play based on the yardage
history of that play vs. the defense;

3. if the candidate play is sufficiently similar to the current
play to be feasible for immediate execution.

To determine whether to execute the play switch for a par-
ticular combination of plays, the agent considers N , the set
of all offensive plays shown to gain more than a threshold
ε value. The agent then selects Min(n ∈ N), the play in
the list most like the current play for each play configuration
and caches the preferred play in a lookup table.

When a play is executed, the agent will use all observa-
tions up to and including observation 3 to determine what
play the defense is executing before performing a lookup to
determine the play switch to make. The process is ended
with execution of a change order to all members of the of-
fensive team. Calculating the feasibility of the play switch
based on play similarity is a crucial part of improving the
team’s performance; in the results section, we evaluate our
similarity-based play switch mechanism vs. a greedy play
switching algorithm that focuses solely on the potential for
yardage gained.

Play Similarity Metric
To calculate play similarities, we create a feature matrix
for all offensive formation/play combinations based on the
training data.



Table 1: Play recognition results (accuracy over all play combinations)
t = 2 3 4 5 6 7 8 9 10
12.50 96.88 96.87 96.85 96.84 96.87 96.89 96.83 96.81

The features collected for each athlete A are

Max(X): The rightmost position traveled to by A

Max(Y): The highest position traveled to by A

Min(X): The leftmost position traveled to by A

Min(Y): The lowest position traveled to by A

Mean(X): =
PN−1

i=0 Xi

N

Mean(Y): =
PN−1

i=0 Yi

N

Median(X): = Sort(X)i/2
Median(Y): = Sort(Y )i/2
FirstToLastAngle: Angle from starting point (x1, y1), to

ending point (x2, y2), is defined as atan
(
4y
4x

)
Start Angle: Angle from the starting point (x0, y0) to

(x1, y1), defined as atan
(
y
x

)
End Angle: Angle from the starting point (xn−1, yn−1) to

(xn, yn), defined as atan
(
4y
4x

)
Total Angle: =

∑N−1
i=0 atan

(
yi+1−yi

xi+1−xi

)
Total Path Distance: =

∑N−1
i=0

(
2
√
xi2 + yi2

)
Feature set F for a given play c contains all the features

for each offensive player in the play and is described as

−→
Fc = {Ac1 ∪Ac1 ∪Ac2 ∪ · · · ∪Ac8}

These features are similar to the ones used in (Rubine
1991) and more recently, by (Wobbrock et al. 2007) to
match pen trajectories in sketch-based recognition tasks, but
generalized to handle multi-player trajectories. To compare
plays we use the sum of the absolute value of the differences
(L1 norm) between each feature Fci. This information is
used to build a similarity matrix Mij for each possible of-
fensive play combination as defined below.

Mij =

‚‚‚−→Fc

‚‚‚−1∑
c=0

∆
−→
Fc

i, j = 1 . . . 8

There is one matrix M for each offensive formation
Oβ , where β = {pro, power, split} are the offensive
formations. Defensive formation/play combinations are
indicated by Dαp, where α = {23, 31, 2222, 2231} and
p represents plays 1..8. M for a specific play configuration
is expressed as OβDαpMi, given i (1. . . 8) is our current
offensive play. The purpose of this algorithm is to find a
value j (play) most similar to i (our current play), with a

history (based on earlier observation) of scoring the most
yardage. This process is accomplished for every offensive
play formation against every defensive play formation
and play combination. When the agent is constructing
the lookup table and needs to determine the most similar
play from a list, given current play i, it calls the method,
min(OβDαpMi) which returns the most similar play.

Improving the Offense
Our algorithm for improving Rush offensive play has two
main phases, a preprocess stage which yields a play switch
lookup table and an execution stage where the defensive play
is recognized and the offense responds with an appropriate
play switch for that defensive play. As described in Section
we train a set of SVM classifiers using 40 instances of every
possible combination of offense (8) and defense plays (8),
from each of the 12 starting formation configurations. This
stage yields a set of models used for play recognition during
the game. Next, we calculate and cache play switches using
the following procedure:

Step 1: Collect data by running the RUSH 2008 football
simulator 50 times for every play combination.

Step 2: Create yardage lookup tables for each play combi-
nation. This information alone is insufficient to determine
how good a potential play is to perform the play switch
action on. The transition play must resemble our current
offensive play or the offensive team will spend too much
time retracing steps and perform very poorly.

Step 3: Create feature matrix for all offensive forma-
tion/play combinations using the probabilistic trace rep-
resentation.

Step 4: Create the final play switch lookup table based on
both the yardage information and the play similarity.

To create the play switch lookup table, the agent first
extracts a list of offensive plays L given the requirement
yards (Li) > ε where ε is the smallest yardage gained
in which the agent does not consider changing the cur-
rent offensive play to another. We used ε = 1.95 based
on a quadratic polynomial fit of total yardage gained in
6 tests with ε = {MIN, 1.1, 1.6, 2.1, 2.6,MAX} where
MIN is small enough no plays are selected to change and
MAX where all plays are selected for change to the highest
yardage play with no similarity comparison. Second, from
the list L find the play most similar (smallest value in the ma-
trix) to our current play i using Min(OβDαpMi) and add it
to the lookup file.

During execution, the offense uses the following proce-
dure:
1. At each observation less than 4, collect movement traces

for each play.



2. At observation 3, use LIBSVM with the collected move-
ment traces and previously trained SVM models to iden-
tify the defensive play.

3. Access the lookup file to find best(i) for our current play
i.

4. Send a change order command to the offensive team to
change to play best(i).
However it is not necessary (or always desirable) to

change all of the players to the new play. We also inves-
tigated the performance of subgroup switching, modifying
the play of small group of key players while leaving the
remaining players alone. By segmenting the team in this
fashion we are able to in essence combine two plays which
had previously been identified as alike to each other with re-
gard to spatio-temporal data, but different in regards to yards
gained. The football offensive team lends itself to three main
groups based on domain knowledge of football. Group 1
contains the QB, RB, and FB; group 2 has LG, C and RG;
and group 3 consists of the remaining players LWR, RWR,
RTE, and LTE.

Figure 3 is a good example of a successful merging of
two plays to produce a superior play given this defense. The
green line represents the average yardage gained. The left
image is the most likely path of the baseline case (a run-
ning play which yields little yardage on average). The mid-
dle image is the most likely execution trace produced by the
total play switch method. The play produced by the total
play switch was not much more successful than the baseline
case; however when only Group 1 (QB, RB, FB) is modified
the success of the play increases greatly and the new play is
shown to be very coordinated and effective.

Empirical Evaluation
The algorithm was tested using the RUSH 2008 simulator
for ten plays on each possible play configuration in three
separate trials. We compared our play switch model (us-
ing the yardage threshold ε = 1.95 as determined by the
quadratic fit) to the baseline Rush offense and to a greedy
play switch strategy (ε = MAX) based solely on the
yardage.

Overall, the average performance of the offense went
from 2.82 yards per play to 3.65 yards per play (ε = 1.95)
with an overall increase of 29%, ±1.5% based on sam-
pling of three sets of ten trials. An analysis of each of the
formation combinations (Figure 6) shows the yardage gain
varies from as much as 100% to as little as 0.1%. Over-
all, performance is consistently better for every configura-
tion tested. In all cases, the new average yardage is over 2.3
yards per play with no weak plays as seen in the baseline.
For example, Power vs. 23 (1.4 average yards per play) and
Power vs. 2222 (1.3 average yards per play). Results with
ε = MAX clearly shows simply changing to the greatest
yardage generally results in poor performance from the of-
fense.

Power vs. 23 is dramatically boosted from about 1.5 yards
to about 3 yards per play, doubling yards gained. Other
combinations, such as Split vs. 23 and Pro vs. 32 already
scored good yardage and improved less dramatically at

Figure 4: Comparison of play switch selection methods. Our
play switch method (shown in red) outperforms both base-
line Rush offense (blue) and a greedy play switch metric
(green).

Figure 5: The play-yardage gain over baseline Rush offense
yielded by our play switch strategy.

about .2 to .4 yards more than the gains in the baseline
sample. In 6 we see all the split configurations do quite
well; this is unsurprising given our calculations of the best
response. However, when the threshold is not in use and the
plays are allowed to change regardless of current yardage,
the results are drastically reduced. The reason seems to be
associated player miscoordinations accidentally induced
by the play switch; by maximizing the play similarity
simultaneously, the possibility of miscoordinations is
reduced. Figure 5 shows yardage gained by the best play
switch strategy over the Rush baseline offense. Power
vs. 23 experiences the greatest enhancement and Split vs. 31
the least. It is interesting to note Split formations in the
baseline performed best and improved the least while the
Power formations performed the worst in the baseline and
improved the most. This indicates an inversely proportional
expected gain by the algorithm.

To evaluate the subgroup switching, we ran the simula-
tion over all three groups and compared them to the base-
line yardage gained and the results of total play switch. Test



Figure 3: Subgroup switching

Figure 6: Comparison of subgroup and total play switching

results clearly indicated the best subgroup switch (consis-
tently Group 1) produced greater gains than the total change,
which still performed better than the baseline. Figure 2 is a
side-by-side comparison of the results. We also compared
the results to the yardage gained if the team had initially
chosen the best response play (the play that on average re-
sults in the greatest yardage gain) for that formation. Early
play recognition combined with subgroup switching yields
the best results, assuming no oracle knowledge of the other
team’s intentions prior to run-time.

Conclusion

In this paper, we present an approach for early, accurate
recognition of defensive plays in the Rush 2008 football
simulator. We demonstrate that a multi-class SVM classi-
fier trained on spatio-temporal game traces can enable the
offense to correctly anticipate the defense’s play by the third
time step. Using this information about the defense’s intent,
our system evaluates the competitive advantage of execut-
ing a play switch based on the potential of other plays to
improve the yardage gained and the similarity of the can-
didate plays to the current play. Our play switch selec-
tion mechanism outperforms both the built-in Rush offense
and a greedy yardage-based switching strategy, increasing
yardage while avoiding the miscoordinations accidentally
induced by the greedy strategy during the transition from the
old play to the new one. Additionally, we demonstrate that
limiting the play switch to a subgroup of key players further
improves performance.
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